跳至主要內容

常见积分表

Kamimika...大约 2 分钟学习笔记

常见积分表

警告

积分一定要记得带常数 +C+C

  • 常数 $$\int kdx = kx + C$$
  • 多项式
    • xαdx=xα+1α+1+C (α1) \int x^\alpha dx = \dfrac{x^{\alpha+1}}{\alpha+1} + C \space (\alpha \neq -1)

    • dxx=lnx+C (α=1) \int \dfrac{dx}{x} = \ln |x| + C \space (\alpha = -1)

  • 指数
    • axdx=axlna+C (a>0,a1) \int a^x dx = \dfrac{a^x}{\ln a} + C \space (a > 0, a\neq 1)

    • exdx=ex+C \int e^x dx = e^x + C

  • 三角函数
    • sinxdx=cosx+C \int \sin x dx = -\cos x + C

    • cosxdx=sinx+C \int \cos x dx = \sin x + C

    • 1cos2xdx=tanx+C \int \dfrac{1}{\cos^2 x} dx = \tan x + C

    • 1sin2x=cotx+C \int \dfrac{1}{\sin^2 x} = -\cot x + C

    • sinxcos2xdx=1cosx+C \int \dfrac{\sin x}{\cos^2 x} dx = \dfrac{1}{\cos x} + C

    • cosxsin2xdx=1sinx+C \int \dfrac{\cos x}{\sin^2 x} dx = -\dfrac{1}{\sin x} + C

    • 1sinxdx=ln1sinx1tanx+C \int \dfrac{1}{\sin x} dx = \ln |\dfrac{1}{\sin x} - \dfrac{1}{\tan x}| + C

    • 1cosxdx=ln1cosxtanx+C \int \dfrac{1}{\cos x} dx = \ln |\dfrac{1}{\cos x} - \tan x| + C

    • sin2xdx=xsinxcosx2 \int \sin^2 x dx = \dfrac{x - \sin x \cos x}{2}

    • cos2xdx=x+sinxcosx2+C \int \cos^2 x dx = \dfrac{x + \sin x \cos x}{2} + C

    • tan2x=(1cos2x1)dx=tanx1+C \int \tan^2 x = \int (\dfrac{1}{\cos^2 x} - 1)dx = \tan x - 1 + C

提示

注意 tan2x\tan^2 xcos2x\cos^2 x 互转 1cos2x=1+tan2x\dfrac{1}{\cos^2 x} = 1 + \tan^2 x1cos2x=(tan2x)\dfrac{1}{\cos^2 x} = (\tan^2 x)'

  • 分母平方带常数
    • dxa2x2=arcsinxa+C \int \dfrac{dx}{\sqrt{a^2 - x^2}} = \arcsin \dfrac{x}{a} + C

    • dxx2±a2=lnx+x2±a2+C \int \dfrac{dx}{\sqrt{x^2 \pm a^2}} = \ln |x + \sqrt{x^2 \pm a^2}| + C

    • dxx2a2=12alnxax+a+C \int \dfrac{dx}{x^2 - a^2} = \dfrac{1}{2a} \ln |\dfrac{x-a}{x+a}| + C

    • dxx2+a2=1aarctanxa+C \int \dfrac{dx}{x^2 +a ^2} = \dfrac{1}{a} \arctan \dfrac{x}{a} + C

提示

根号下 x2x^2a2a^2 可使用换元法 a2x2    x=asint\sqrt{a^2-x^2} \implies x = a\sin ta2+x2    x=atant\sqrt{a^2+x^2} \implies x = a\tan tx2a2    x=acost\sqrt{x^2-a^2} \implies x = \dfrac{a}{\cos t}

  • 根式平方带常数
    • a2x2=a22arcsinxa+x2a2x2+C \int \sqrt{a^2 - x^2} = \dfrac{a^2}{2} \arcsin \dfrac{x}{a} + \dfrac{x}{2} \sqrt{a^2 - x^2} + C

    • x2±a2dx=±a22lnx+x2±a2+x2x2±a2+C \int \sqrt{x^2 \pm a^2} dx = \pm \dfrac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2}| + \dfrac{x}{2} \sqrt{x^2 \pm a^2} + C

  • 多项式比根式: 分母用配方消去一次项, 分子可拆成二次与一次的线性组合
    • 分子二次

      x2dxx2+a2=x2+a2a2x2+a2dx=x2+a2dxa2dxx2+a2 \int \dfrac{x^2 dx}{\sqrt{x^2+a^2}} = \int \dfrac{x^2 + a^2 - a^2}{\sqrt{x^2+a^2}} dx = \int \sqrt{x^2+a^2} dx - \int \dfrac{a^2 dx}{\sqrt{x^2+a^2}}

    • 分子一次

      xdxa2±x2=±12d(a2±x2)a2±x2=±a2±x2+C \int \dfrac{x dx}{\sqrt{a^2 \pm x^2}} = \pm \dfrac{1}{2} \int \dfrac{d(a^2 \pm x^2)}{\sqrt{a^2 \pm x^2}} = \pm \sqrt{a^2 \pm x^2} + C

上次编辑于:
贡献者: wzh
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.4.1