跳至主要內容

常见积分表

Kamimika...小于 1 分钟学习笔记

常见积分表

  • 常数 $$\int kdx = kx + C$$
  • 多项式
    • xαdx=xα+1α+1+C (α1) \int x^\alpha dx = \dfrac{x^{\alpha+1}}{\alpha+1} + C \space (\alpha \neq -1)

    • dxx=lnx+C (α=1) \int \dfrac{dx}{x} = \ln |x| + C \space (\alpha = -1)

  • 指数
    • axdx=axlna+C (a>0,a1) \int a^x dx = \dfrac{a^x}{\ln a} + C \space (a > 0, a\neq 1)

    • exdx=ex+C \int e^x dx = e^x + C

  • 三角函数
    • sinxdx=cosx+C \int \sin x dx = -\cos x + C

    • cosxdx=sinx+C \int \cos x dx = \sin x + C

    • 1cos2xdx=tanx+C \int \dfrac{1}{\cos^2 x} dx = \tan x + C

    • 1sin2x=cotx+C \int \dfrac{1}{\sin^2 x} = -\cot x + C

    • sinxcos2xdx=1cosx+C \int \dfrac{\sin x}{\cos^2 x} dx = \dfrac{1}{\cos x} + C

    • cosxsin2xdx=1sinx+C \int \dfrac{\cos x}{\sin^2 x} dx = -\dfrac{1}{\sin x} + C

    • sin2xdx=xsinxcosx2 \int \sin^2 x dx = \dfrac{x - \sin x \cos x}{2}

    • cos2xdx=x+sinxcosx2+C \int \cos^2 x dx = \dfrac{x + \sin x \cos x}{2} + C

    • 1sinxdx=ln1sinx1tanx+C \int \dfrac{1}{\sin x} dx = \ln |\dfrac{1}{\sin x} - \dfrac{1}{\tan x}| + C

    • 1cosxdx=ln1cosxtanx+C \int \dfrac{1}{\cos x} dx = \ln |\dfrac{1}{\cos x} - \tan x| + C

  • 分母平方带常数
    • dxa2x2=arcsinxa+C \int \dfrac{dx}{\sqrt{a^2 - x^2}} = \arcsin \dfrac{x}{a} + C

    • dxx2+a2=lnx+x2+a2+C \int \dfrac{dx}{\sqrt{x^2 + a^2}} = \ln |x + \sqrt{x^2 + a^2}| + C

    • dxx2a2=lnx+x2a2+C \int \dfrac{dx}{\sqrt{x^2 - a^2}} = \ln |x + \sqrt{x^2 - a^2}| + C

    • dxx2a2=12alnxax+a+C \int \dfrac{dx}{x^2 - a^2} = \dfrac{1}{2a} \ln |\dfrac{x-a}{x+a}| + C

    • dxx2+a2=1aarcsin1a+C \int \dfrac{dx}{x^2 +a ^2} = \dfrac{1}{a} \arcsin \dfrac{1}{a} + C

上次编辑于:
贡献者: wzh
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.4.1