S=∫abf(x)dx S = \int_a^b f(x) dx S=∫abf(x)dx
{x=x(t)y=y(t) \begin{cases}x = x(t) \\ y = y(t) \end{cases} {x=x(t)y=y(t)
S=∫ab∣y(t)x′(t)∣dt S = \int_a^b |y(t) x'(t)| dt S=∫ab∣y(t)x′(t)∣dt
注意
注意绝对值
S=∫02π12r2(θ)dθ S = \int_0^{2\pi} \dfrac{1}{2} r^2(\theta) d\theta S=∫02π21r2(θ)dθ
注意: 极坐标方程的面积是与原点连线扫过的面积,而不是与x轴围成的面积
f(x,y)=0 f(x, y) = 0 f(x,y)=0
转成极坐标方程
{x=r(θ)cosθy=r(θ)sinθ \begin{cases} x = r(\theta) \cos \theta \\ y = r(\theta) \sin \theta \end{cases} {x=r(θ)cosθy=r(θ)sinθ
代入得
f(r(θ)cosθ,r(θ)sinθ)=0 f(r(\theta) \cos \theta, r(\theta) \sin \theta) = 0 f(r(θ)cosθ,r(θ)sinθ)=0
再求积分