跳至主要內容

曲率

Kamimika...小于 1 分钟学习笔记

曲率

定义

在曲线上由点 MM 到点 MM': 切线转过角度 Δα|\Delta \alpha|, 弧长为 Δs\Delta s平均曲率: ΔαΔs\dfrac{|\Delta \alpha|}{|\Delta s|}曲率: K(M)=limΔs0ΔαΔsK(M) = \lim_{|\Delta s| \to 0} \dfrac{|\Delta \alpha|}{|\Delta s|}

注意

注意曲率要加绝对值,曲率是非负数

直角坐标系

由于 y=tanαy' = \tan \alpha, α=arctany\alpha = \arctan y'    dα=y1+y2dx\implies d\alpha = \dfrac{y''}{1+y'^2} dx 又因为 ds=1+y2dxds = \sqrt{1+y'^2} dx

    K=dαds=y(1+y2)32 \implies K = \left|\dfrac{d\alpha}{ds}\right| = \left|\dfrac{y''}{(1+y'^2)^\frac{3}{2}}\right|

警告

注意曲率为非负数,要加绝对值

参数方程

高阶导数#参数方程

dydx=y(t)x(t) \dfrac{dy}{dx} = \dfrac{y'(t)}{x'(t)}

d2ydx2=ddx(dydx)=ddt(dydx)dxdt=x(t)y(t)x(t)y(t)x3(t) \dfrac{d^2 y}{dx^2} = \dfrac{d}{dx}(\dfrac{dy}{dx}) = \dfrac{\dfrac{d}{dt}(\dfrac{dy}{dx})}{\dfrac{dx}{dt}} = \dfrac{x'(t) y''(t) - x''(t) y'(t)}{x'^3(t)}

K=x(t)y(t)x(t)y(t)[x2(t)+y2(t)]32 K = \dfrac{|x'(t) y''(t) - x''(t) y'(t)|}{[x'^2(t) + y'^2(t)]^\frac{3}{2}}

曲率圆

曲率半径: R=1KR = \dfrac{1}{K} (曲率的倒数) 曲率中心坐标:

(xy(1+y2)y,y+1+y2y) \left( x-\dfrac{y'(1+y'^2)}{y''}, y+\dfrac{1+y'^2}{y''} \right)

上次编辑于:
贡献者: wzh656
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.4.3