跳至主要內容

线性变换

Kamimika...大约 1 分钟学习笔记

线性变换

定义

满足线性性: A(kα+β)=kA(α)+A(β)\mathscr A(k \boldsymbol \alpha + \boldsymbol \beta) = k\mathscr A (\boldsymbol \alpha) + \mathscr A(\boldsymbol \beta)

矩阵

{A(ε1)=a11ε1+a21ε2++an1εn,A(ε2)=a12ε1+a22ε2++an2εn,A(εn)=a1nε1+a2nε2++annεn, \begin{cases} \mathscr A(\boldsymbol \varepsilon_1) = a_{11} \boldsymbol \varepsilon_1 + a_{21} \boldsymbol \varepsilon_2 + \cdots + a_{n1} \boldsymbol \varepsilon_n, \\ \mathscr A(\boldsymbol \varepsilon_2) = a_{12} \boldsymbol \varepsilon_1 + a_{22} \boldsymbol \varepsilon_2 + \cdots + a_{n2} \boldsymbol \varepsilon_n, \\ \vdots \\ \mathscr A(\boldsymbol \varepsilon_n) = a_{1n} \boldsymbol \varepsilon_1 + a_{2n} \boldsymbol \varepsilon_2 + \cdots + a_{nn} \boldsymbol \varepsilon_n, \\ \end{cases}

A(ε1,ε2,,εn)=(ε1,ε2,,εn)A \mathscr A(\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n) = (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n) \mathbf A

其中

A=(a11a12a1na21a22a2nan1an2ann) \mathbf A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}

为线性变换 A\mathscr A 在基 ε1,ε2,,εn\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n 下的矩阵

注意

注意和方程的下标是转置的

向量与坐标

向量 α\boldsymbol \alphaA=(ε1,ε2,,εn)\mathbf A = (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n) 下坐标 x=(x1x2xn)\mathbf x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} 代表 α=Ax\boldsymbol \alpha = \mathbf A \mathbf x


由基变换公式 B=AC\mathbf B = \mathbf A \mathbf C 得 在 B=(η1,η2,,ηn)\mathbf B = (\boldsymbol \eta_1, \boldsymbol \eta_2, \cdots, \boldsymbol \eta_n) 下有 α=BC1x\boldsymbol \alpha = \mathbf B \mathbf C^{-1} \mathbf x 坐标 y=C1(x1x2xn)\mathbf y = \mathbf C^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}


对于线性变换 \mathbfscrA\mathbfscr A 坐标上 A(α)=A(Ax)=A(Dx)\mathscr A (\boldsymbol \alpha) = \mathscr A (\mathbf A \mathbf x) = \mathbf A (\mathbf D \mathbf x) 在原基底下坐标变为 Dx\mathbf D \mathbf x

因为 A(A)=AD\mathscr A (\mathbf A) = \mathbf A \mathbf D 所以 D\mathbf DA\mathscr A 在基底 A\mathbf A 下的矩阵


在另一组基 B=(η1,η2,,ηn)\mathbf B = (\boldsymbol \eta_1, \boldsymbol \eta_2, \cdots, \boldsymbol \eta_n)A(α)=A(Ax)=A(BC1x)=A(By)=ADx=BC1Dx=BC1DCy\mathscr A (\boldsymbol \alpha) = \mathscr A (\mathbf A \mathbf x) = \mathscr A (\mathbf B \mathbf C^{-1} \mathbf x) = \mathscr A (\mathbf B \mathbf y) = \mathbf A \mathbf D \mathbf x = \mathbf B \mathbf C^{-1} \mathbf D \mathbf x = \mathbf B \mathbf C^{-1} \mathbf D \mathbf C \mathbf yA(B)=A(AC)=BC1DC\mathscr A (\mathbf B) = \mathscr A (\mathbf A \mathbf C) = \mathbf B \mathbf C^{-1} \mathbf D \mathbf C 所以 C1DC\mathbf C^{-1} \mathbf D \mathbf CA\mathscr A 在基底 A\mathbf A 下的矩阵

上次编辑于:
贡献者: wzh656
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.4.3