跳至主要內容

标准正交基

Kamimika...大约 1 分钟学习笔记

标准正交基

定义

α=a1ε1+a2ε2++anεn=(ε1,ε2,,εn)(a1a2an) \boldsymbol \alpha = a_1 \boldsymbol \varepsilon_1 + a_2 \boldsymbol \varepsilon_2 + \cdots + a_n \boldsymbol \varepsilon_n = (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}

β=b1ε1+b2ε2++bnεn=(ε1,ε2,,εn)(b1b2bn) \boldsymbol \beta = b_1 \boldsymbol \varepsilon_1 + b_2 \boldsymbol \varepsilon_2 + \cdots + b_n \boldsymbol \varepsilon_n = (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}

(α,β)=i=1nj=1naibj(εi,εj)=(a1,a2,,an)A(b1b2bn) (\boldsymbol \alpha, \boldsymbol \beta) = \sum_{i=1}^n \sum_{j=1}^n a_i b_j (\boldsymbol \varepsilon_i, \boldsymbol \varepsilon_j) = \\ (a_1, a_2, \cdots, a_n) \mathbf A \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}

其中

A=((ε1,ε1)(ε1,ε2)(ε1,εn)(ε2,ε1)(ε2,ε2)(ε2,εn)(εn,ε1)(εn,ε2)(εn,εn)) \mathbf A = \begin{pmatrix} (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_1) & (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2) & \cdots & (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_n) \\ (\boldsymbol \varepsilon_2, \boldsymbol \varepsilon_1) & (\boldsymbol \varepsilon_2, \boldsymbol \varepsilon_2) & \cdots & (\boldsymbol \varepsilon_2, \boldsymbol \varepsilon_n) \\ \vdots & \vdots & \ddots & \vdots \\ (\boldsymbol \varepsilon_n, \boldsymbol \varepsilon_1) & (\boldsymbol \varepsilon_n, \boldsymbol \varepsilon_2) & \cdots & (\boldsymbol \varepsilon_n, \boldsymbol \varepsilon_n) \\ \end{pmatrix}

称作基 ε1,ε2,,εn\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \cdots, \boldsymbol \varepsilon_n度量矩阵

A\mathbf A对角矩阵, 即 (εi,εj)=δij={1,i=j0,ij(\boldsymbol \varepsilon_i, \boldsymbol \varepsilon_j) = \delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases} 向量两两正交, 则称该基为正交基

A\mathbf A单位矩阵, 即向量两两正交且每个向量都为单位向量, 则称该基为标准正交基

在标准正交基下,

(α,β)=αTβ (\boldsymbol \alpha, \boldsymbol \beta) = \boldsymbol \alpha^T \boldsymbol \beta

施密特正交法

α1,α2,,αs\boldsymbol \alpha_1, \boldsymbol \alpha_2, \cdots, \boldsymbol \alpha_s 是线性无关的向量组

  1. 正交化

β1=α1 \boldsymbol \beta_1 = \boldsymbol \alpha_1

β2=α2(α2,β1)(β1,β1)β1 \boldsymbol \beta_2 = \boldsymbol \alpha_2 - \dfrac{(\boldsymbol \alpha_2, \boldsymbol \beta_1)}{(\boldsymbol \beta_1, \boldsymbol \beta_1)} \boldsymbol \beta_1

β3=α3(α3,β1)(β1,β1)β1(α3,β2)(β2,β2)β2 \boldsymbol \beta_3 = \boldsymbol \alpha_3 - \dfrac{(\boldsymbol \alpha_3, \boldsymbol \beta_1)}{(\boldsymbol \beta_1, \boldsymbol \beta_1)} \boldsymbol \beta_1 - \dfrac{(\boldsymbol \alpha_3, \boldsymbol \beta_2)}{(\boldsymbol \beta_2, \boldsymbol \beta_2)} \boldsymbol \beta_2

\vdots

βs=αs(αs,β1)(β1,β1)β1(αs,βs1)(βs1,βs1)βs1 \boldsymbol \beta_s = \boldsymbol \alpha_s - \dfrac{(\boldsymbol \alpha_s, \boldsymbol \beta_1)}{(\boldsymbol \beta_1, \boldsymbol \beta_1)} \boldsymbol \beta_1 - \cdots - \dfrac{(\boldsymbol \alpha_s, \boldsymbol \beta_{s-1})}{(\boldsymbol \beta_{s-1}, \boldsymbol \beta_{s-1})} \boldsymbol \beta_{s-1}

  1. 单位化

ηi=βiβi \boldsymbol \eta_i = \dfrac{\boldsymbol \beta_i}{|\boldsymbol \beta_i|}

η1,η2,,ηs\boldsymbol \eta_1, \boldsymbol \eta_2, \cdots, \boldsymbol \eta_s 为标准正交基

上次编辑于:
贡献者: wzh656
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.4.3