跳至主要內容

基变换与坐标变换

Kamimika...大约 1 分钟学习笔记

基变换与坐标变换

基变换

ε1,ε2,εn\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \dots \boldsymbol \varepsilon_nη1,η2,ηn\boldsymbol \eta_1, \boldsymbol \eta_2, \dots \boldsymbol \eta_nnn 维空间 VV 的两组基满足

{η1=c11ε1+c21ε2++cn1εnη2=c12ε1+c22ε2++cn2εnηn=c1nε1+c2nε2++cnnεn \begin{cases} \boldsymbol \eta_1 = c_{11} \boldsymbol \varepsilon_1 + c_{21} \boldsymbol \varepsilon_2 + \cdots + c_{n1} \boldsymbol \varepsilon_n \\ \boldsymbol \eta_2 = c_{12} \boldsymbol \varepsilon_1 + c_{22} \boldsymbol \varepsilon_2 + \cdots + c_{n2} \boldsymbol \varepsilon_n \\ \vdots \\ \boldsymbol \eta_n = c_{1n} \boldsymbol \varepsilon_1 + c_{2n} \boldsymbol \varepsilon_2 + \cdots + c_{nn} \boldsymbol \varepsilon_n \end{cases}

C=(c11c12c1nc21c22c2ncn1cn2cnn) \mathbf C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}

基变换方程可表示为

(η1,η2,ηn)=(ε1,ε2,εn)C (\boldsymbol \eta_1, \boldsymbol \eta_2, \dots \boldsymbol \eta_n) = (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \dots \boldsymbol \varepsilon_n) \mathbf C

注意

注意和方程的下标是转置的

C=(cij)n×n\mathbf C=(c_{ij})_{n \times n}过渡矩阵

坐标变换

ξ\boldsymbol \xiη1,η2,ηn\boldsymbol \eta_1, \boldsymbol \eta_2, \dots \boldsymbol \eta_n 下坐标为

x=(x1x2xn)T \mathbf x = (x_1 \quad x_2 \quad \cdots \quad x_n)^T

ε1,ε2,εn\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \dots \boldsymbol \varepsilon_n 下坐标为

x=(x1x2xn)T \mathbf x' = (x_1' \quad x_2' \quad \cdots \quad x_n')^T

(η1,η2,ηn)=(ε1,ε2,εn)C (\boldsymbol \eta_1, \boldsymbol \eta_2, \dots \boldsymbol \eta_n) = (\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \dots \boldsymbol \varepsilon_n) \mathbf C

x=Cx \mathbf x = \mathbf C \mathbf x'

x=C1x \mathbf x' = \mathbf C^{-1} \mathbf x

性质

若已知 ε1,ε2,εn\boldsymbol \varepsilon_1, \boldsymbol \varepsilon_2, \dots \boldsymbol \varepsilon_n 是一组基, 则 C\mathbf C 可逆     \iff η1,η2,ηn\boldsymbol \eta_1, \boldsymbol \eta_2, \dots \boldsymbol \eta_n 是一组基

求解过渡矩阵

(α1α2αn)(\boldsymbol \alpha_1 \quad \boldsymbol \alpha_2 \quad \cdots \quad \boldsymbol \alpha_n)(β1β2βn)(\boldsymbol \beta_1 \quad \boldsymbol \beta_2 \quad \cdots \quad \boldsymbol \beta_n) 的过渡矩阵为

(β1β2βn)=(α1α2αn)C (\boldsymbol \beta_1 \quad \boldsymbol \beta_2 \quad \cdots \quad \boldsymbol \beta_n) = (\boldsymbol \alpha_1 \quad \boldsymbol \alpha_2 \quad \cdots \quad \boldsymbol \alpha_n) \mathbf C

C=(α1α2αn)1(β1β2βn) \mathbf C = (\boldsymbol \alpha_1 \quad \boldsymbol \alpha_2 \quad \cdots \quad \boldsymbol \alpha_n)^{-1} (\boldsymbol \beta_1 \quad \boldsymbol \beta_2 \quad \cdots \quad \boldsymbol \beta_n)

坐标变换的不动点

ρ\boldsymbol \rho 在两组基下坐标相同

ρ=Ax=Bx \boldsymbol \rho = \mathbf A \mathbf x = \mathbf B \mathbf x

    (AB)x=0 \implies (\mathbf A - \mathbf B) \mathbf x = 0

AB=0|\mathbf A - \mathbf B| = 0, 则有非零解AB0|\mathbf A - \mathbf B| \neq 0, 则只有零解, 即只有原点不动

上次编辑于:
贡献者: wzh656
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.4.3