跳至主要內容

链式法则

Kamimika...小于 1 分钟学习笔记

链式法则

一阶导

y=f(u)y=f(u), u=g(x)u=g(x), 即 y=f(g(x))y = f(g(x)), 则

dydx=dydududx \dfrac{dy}{dx} = \dfrac{dy}{du} \cdot \dfrac{du}{dx}

二阶导

y=f(u)y=f(u), u=g(x)u=g(x), 即 y=f(g(x))y = f(g(x)), 则

d2ydx2=ddx(dydx)=ddx(dydududx)=1dx(d2ydududx+dydud2udx)(微分乘法法则)=d2ydududx2+dydud2udx2=d2ydu2du2dx2+dydud2udx2(配凑du)=d2ydu2(dudx)2+dydud2udx2 \begin{align} \dfrac{d^2 y}{dx^2} &= \dfrac{d}{dx}(\dfrac{dy}{dx}) \\ &= \dfrac{d}{dx}(\dfrac{dy}{du} \cdot \dfrac{du}{dx}) \\ &= \dfrac{1}{dx}(\dfrac{d^2 y}{du} \cdot \dfrac{du}{dx} + \dfrac{dy}{du} \cdot \dfrac{d^2 u}{dx}) \text{(微分乘法法则)} \\ &= \dfrac{d^2 y}{du} \cdot \dfrac{du}{dx^2} + \dfrac{dy}{du} \cdot \dfrac{d^2 u}{dx^2} \\ &= \dfrac{d^2 y}{du^2} \cdot \dfrac{du^2}{dx^2} + \dfrac{dy}{du} \cdot \dfrac{d^2 u}{dx^2} \text{(配凑du)} \\ &= \dfrac{d^2 y}{du^2} \cdot (\dfrac{du}{dx})^2 + \dfrac{dy}{du} \cdot \dfrac{d^2 u}{dx^2} \\ \end{align}

警告

易混点: d2ydx\dfrac{d^2 y}{dx} 为二阶导, dy2dx2=(dydx)2\dfrac{dy^2}{dx^2} = (\dfrac{dy}{dx})^2 为一阶导的平方; 计算 dfdx\dfrac{df}{dx} 时须先按照微分法则转换 dfdf, 而非 dfdx\dfrac{df}{dx} 整体

上次编辑于:
贡献者: wzh656
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v3.3.2